Redis实现分布式限流
2018-06-09 12:57:08
1175 次阅读
0 个评论
我们做一个简单的封装,把限流器定义成一个注解,然后定义2个属性,时间和次数,这也是计数器的2个核心属性
import org.springframework.core.Ordered;
import org.springframework.core.annotation.Order;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
/**
* 通用的方法限流
*/
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Documented
@Order(Ordered.HIGHEST_PRECEDENCE)
public @interface SmartRateLimit {
/**
* 允许访问的次数,默认值MAX_VALUE
*/
long limitCount() default Long.MAX_VALUE;
/**
* 时间段,单位秒,默认每秒限流大小
*/
long timeRange() default 1;
}
注解的实现
import com.smart.server.ratelimit.RequestLimitException;
import com.smart.server.ratelimit.annotation.SmartRateLimit;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.aop.support.AopUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.EnableAspectJAutoProxy;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import java.lang.reflect.Method;
import java.util.concurrent.TimeUnit;
import lombok.extern.slf4j.Slf4j;
/**
* 通用方法限流实现
**/
@Aspect
@Component
@EnableAspectJAutoProxy(proxyTargetClass = true)
@Slf4j
public class SmartRateLimitInterceptor {
@Autowired
private RedisTemplate<String, String> redisTemplate;
@Pointcut("@annotation(com.smart.server.ratelimit.annotation.SmartRateLimit)")
private void limit() {
}
@Before("limit()")
public void before(JoinPoint joinPoint) throws RequestLimitException {
MethodSignature methodSignature = (MethodSignature) joinPoint.getSignature();
Method targetMethod = AopUtils.getMostSpecificMethod(methodSignature.getMethod(), joinPoint.getTarget().getClass());
String targetName = joinPoint.getTarget().getClass().getName();
String methodName = joinPoint.getSignature().getName();
SmartRateLimit smartRateLimit = targetMethod.getAnnotation(SmartRateLimit.class);
long limitCount = smartRateLimit.limitCount();
long timeRange = smartRateLimit.timeRange();
String redisKey = getRedisKey(targetName, methodName);
long count = redisTemplate.opsForValue().increment(redisKey, 1);
log.info("count:" + count);
if (count == 1) {
redisTemplate.expire(redisKey, timeRange, TimeUnit.SECONDS);
}
if (count > limitCount) {
log.error("访问方法" + redisKey + "]超过了限定的次数[" + limitCount + "]");
throw new RequestLimitException("请求超出限制:" + redisKey + ", 当前次数:" + count);
}
}
/**
* 获取缓存的key值
*/
private String getRedisKey(String targetName, String methodName) {
StringBuilder sb = new StringBuilder("");
sb.append("limitrate.").append(targetName).append(".").append(methodName);
return sb.toString();
}
}
利用Redis的increment自增操作记录单位时间内的请求数,Redis的单线程和increment的原子操作能够做到多线程下计数的准确性
当超过我们设计的阈值时,我们抛出一个超限异常,然后使用全局异常进行拦截处理
public class RequestLimitException extends Exception {
private static final long serialVersionUID = 1364225358754654702L;
public RequestLimitException() {
super("请求超出设定的限制");
}
public RequestLimitException(String message) {
super(message);
}
}
import com.smart.server.base.BaseJsonResult;
import com.smart.server.ratelimit.RequestLimitException;
import com.smart.service.base.BusinessErrorMsg;
import com.smart.service.base.BusinessException;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestControllerAdvice;
import java.util.Arrays;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import lombok.extern.slf4j.Slf4j;
/**
* 全局异常处理
*/
@RestControllerAdvice
@Slf4j
public class GlobalExceptionHandler {
/**
* 限流异常
*/
@ExceptionHandler(value = RequestLimitException.class)
@ResponseBody
public BaseJsonResult<Object> limitExceptionHandler(HttpServletRequest req, Exception e) throws Exception {
printMethodParameters(req);
BaseJsonResult<Object> baseJsonResult = new BaseJsonResult<>();
baseJsonResult.setStatus(HttpStatus.INTERNAL_SERVER_ERROR.value());
baseJsonResult.setMsg("系统繁忙,请稍后重试!");
return baseJsonResult;
}
}
至此,限流的处理已经完成,我们只需要在方法上加上注解即可
@RequestMapping(value = "ratelimit", method = RequestMethod.GET)
@SmartRateLimit(limitCount = 5)
public BaseJsonResult rateLimit() throws Exception {
log.info("*********************************");
return successNullDataResult();
}
00
相关话题